Programming Languages

p02overview

CMSC 4023
token
source program Lexical parse trace
Analysis S Parser
yylex()
Figure 1. Execution Overview
(p02.cpp) (pO02lex.I) (p02pary)
lex yacc
lex pO2lex.| yacc -d -v p02pary
mv lex.yy.c pO2lex.cpp mv y.tab.c pO2par.cpp
(p02lex.cpp) (p02par.cpp)
y
C++ Compiler C++ Compiler C++ Compiler
g++ -¢ -g p02.cpp g++ -c -g p02lex.cpp g++ -c -g p02par.cpp
(p02.0) (p02lex.o) (p02par.o)
Linkage Editor
g++ -0 p02 p02.0 p02lex.o p02par.o -ly -Im
™)
Figure 2. Compilation Overview
H#

™

H

File makep02 contains instructions for creating file p02,

™

Author: Thomas R. Turner
E-Mail: trturner@ucok.edu

Date: March, 2007

H

™

Copyright March, 2007 by Thomas R. Turner.

Do not reproduce without permission from Thomas R. Turner.
H

™

Object files

p02.0 p02par.o p02lex.o

${obj}
g++ -0 p02 S{obj} -ly -Im

Figure 3. File p02make (continued)

Programming Languages
CMSC 4023

p02overview

H

™

File pO2par.cpp processes command line arguments
H

™

p02.0: p02.cpp p02lex.h p02par.h
g++-c -g p02.cpp

H

™

File p02lex.l is the lexical analyzer
H

p02lex.cpp: p02lex.|
lex p02lex.l
mv lex.yy.c p02lex.cpp

H

bd

File pO2lex.cpp is created by lex in the previous step
H

p02lex.o: p02lex.cpp p02lex.h y.tab.h
g++ -c -g p02lex.cpp

H

kel

File pO2par.cpp is the C++ parser created by yacc
H

p02par.o: p02par.cpp p02par.h
g++ -c -g pO2par.cpp

H

o

File pO2par.y contains the specification of the Subset Pascal

Parser in a format acceptable to yacc
H

o

y.tab.h\

p02par.cpp: p02par.y
yacc -d -v p02par.y
mv y.tab.c pO2par.cpp

*t

Figure 3. File p02make (continued)

Programming Languages

CMSC 4023
left side
1 program
2 statement-list
3 statement-list
4 statement
5 statement
6 statement
7 id-list
8 id-list
9 expression-list
10 expression-list
11 expression
12 expression
13 primary
14 primary
15 primary
16 additive-operator
17 additive-operator

N N A N

p02overview

right side

begin statement-list end
statement

statement-list statement
id := expression ;

read (id-list) ;

write (expression-list) ;
id

id-list , id

expression

expression-list , expression
primary

expression additive-operator primary
(expression’)

id

intlit

+

Table 1. Set of productions for the micro grammar of Example 2.

Programming Languages p02overview

CMSC 4023

Yacc is a tool that will generate a parser given an LR(0) grammar.

Structure of a Yacc Grammar

... definition section ...

%%

... rules section ...

%%

... user subroutine section ...

Symbol Conventions

Typically, non-terminal symbols are given in lowercase and terminal symbols are assigned all
capital letters. For example, the rule:

program - program-head declarations program-body .

would be expressed for a yacc grammar as

program:
program_head declarations program_body PERIOD

Note that hyphens have been changed to underscores to satisfy the C++ rules for identifiers
and the period at the extreme right on the right hand side (RHS) of the rule has been changed
to a capitalized spelling.

Definition Section

The definition section can contain

literal block

Declarations necessary for grammar actions and user subroutines are placed in the
literal block. The literal block includes all .h files. A literal block is enclosed between
%{ and %} on separate lines as shown below.

%{

... C++ macro preprocessor definitions, declarations, and code ...

%}

%token declarations

%token declarations are used to define terminal symbols. Terminal symbols defined
by %token declarations are made available to a scanner implemented using lex. File
y.tab.h is created when yacc is invoked. File y.tab.h assigns positive integer values to
terminal symbols defined using %token declarations. The values assigned to the
terminal symbols are their token codes not the actual values represented by the
token. A token is an integer code and a spelling. The spelling is the string of
characters recognized by the scanner for that token.

To make the strings recognized by the scanner available to the parser for the example
above, you must add the following statement to the scanner.

Programming Languages

CMSC 4023

p02overview

Variable yytext has type char* and points to the most recent string of characters

recognized by the scanner.

Rules Section

The rules section contains

grammar rules

A rule of the grammar has a Left Hand Side (LHS) and a Right Hand Side (RHS). For
example, consider the grammar below with actions enclosed between { and }.

actions containing C++ code

%token PLUS

%token MINUS

%token LPAREN

%token RPAREN

%token COMMA

%token SEMICOLON

%token ASSIGN

%token INTLIT

%token ID

%token READ

%token WRITE

%token BEGAN

%token END

%%

program:
BEGAN statement_list END
{tfs << endl << “#001 program -> begin statement-list end” ;
}

statement_list:
statement
{tfs << end| << “#002 statement-list -> statement”;
}

statement_list:
statement_list statement

{tfs << endl << “#003 statement-list -> statement-list statement”;

}

statement:
ID ASSIGN expression SEMICOLON
{tfs << endl << “#004 statement -> := expression ;”;
}
statement:
READ LPAREN id_list RPAREN SEMICOLON
{tfs << endl << “#005 statement -> READ (id-list) ;”;

}

Programming Languages p02overview
CMSC 4023

statement:
WRITE LPAREN expression_list RPAREN SEMICOLON
{tfs << endl << “#006 statement -> WRITE (expression-list) ;”; }

id_list:

ID

{tfs << end| << “#007 id-list -> ID”; }
id_list:

id_list COMMA ID

{tfs << end| << “#008 id-list -> id-list, ID”; }
expression_list:

expression

{tfs << endl << “#009 expression-list -> expression”; }
expression_list:

expression_list COMMA expression

{tfs << endl << “#010 expression-list -> expression-list , expression”; }
expression:

primary

{tfs << endl << “#011 expression -> primary”; }
expression:

expression additive-operator primary

{tfs << endl << “#012 expression -> expression additive-operator primary”; }
primary:

LPAREN expression RPAREN

{tfs << endl << “#013 primary -> (expression)”; }
primary:

ID

{tfs << endl << “#014 primary -> ID"; }
primary:

INTLIT

{tfs << endl << “#015 primary -> INTLIT”; }
additive-operator:

PLUS

{tfs << endl << “#016 additive-operator -> +”; }
additive-operator:

MINUS

{tfs << endl << “#017 additive-operator ->-"; }

Programming Languages p02overview
CMSC 4023

begin read(x); x:=x+2; write(x) end

Translator Design

CMSC 4173

Token:Code=267 Name= BEGIN
Token:Code=269 Name= READ
Token:Code=263 Name= LPAREN

Token:Code=273 Name=IDENTIFIER

#007 IDENTIFIER_Nist->IDENTIFIER

Token:Code=264 Name= RPAREN
#005 READ (IDENTIFIER list)
#002 statement list->statement
Token:Code=262 Name= SEMICOLON
Token:Code=273 Name=IDENTIFIER
Token:Code=265 Name= ASSIGN
Token:Code=273 Name=IDENTIFIER
#014 primary->IDENTIFIER

Token:Code=259 Name= PLUS
#016 addop-> +
Token:Code=272 Name= INTLIT

#015 primary->INTLIT

#012 expression->primary addop
#004 IDENTIFIER := expression
#003 statement_list->statement

Token:Code=262 Name= SEMICOLON
Token:Code=270 Name= WRITE
Token:Code=263 Name= LPAREN

Token:Code=273 Name=IDENTIFIER
#014 primary->IDENTIFIER
Token:Code=264 Name= RPAREN
#011 expression->primary

line= 1 col= 1
line= 1 col= 7
line= 1 col= 11
line= 1 col= 12
line= 1 col= 13
line= 1 col= 14
line= 1 col= 16
line= 1 col= 17
line= 1 col= 19
line= 1 col= 20

line= 1 col= 21
primary

list ; statement

line= 1 col= 22
line= 1 col= 24
line= 1 col= 29
line= 1 col= 30
line= 1 col= 31

#009 expression_list->expression

#006 WRITE (expression_list)

#003 statement_list->statement_

Token:Code=268 Name= END

list ; statement
line= 1 col= 33

#001 program->BEGIN statement_ list END

p02overview
File t01.trc

Spelling=""begin™
Spelling=""read"
Spelling="("
Spelling=""x"

Spelling="")"
Spelling="";"
Spelling="x"
Spelling="":="
Spelling="x"
Spelling=""+"

Spelling="2"

Spelling="";
Spelling="write"
Spelling="("
Spelling="x""

Spelling="")"

Spelling="end"

Translator Design
CMSC 4173

p02overview
File makemcr

rm mcrpar.cpp

rm mcrlex.cpp

rm *.o

rm mcr

make - makemicro

Translator Design p02overview
CMSC 4173 File makemicro

H

™

File makemcr creates a micro language compiler
H

™

Author: Thomas R. Turner
E-Mail: trturner@uco.edu
Date: January, 2012

H

Copyright January, 2012 by Thomas R. Turner.
Do not reproduce without permission from Thomas R. Turner.

#

#

Object files

#

obj = mcrpar.o \
mcrlex.o \
mcr.o

#

Bind the Micro Parser

#

mcr: S{obj}
g++ -0 mcr ${obj} -Im -lI

H

s

File mcr.cpp processes command line arguments

H
mcr.o: mcr.cpp mcrlex.h
g++ -C -g mcr.cpp
#
File mcrlex.cpp is the lex-generated scanner
H

mcrlex.cpp: mcrlex.| mcrlex.h
lex mcrlex.!
mv lex.yy.c mcrlex.cpp

H+

mcrlex.o: mcrlex.cpp mcrlex.h

g++ -c -g mcrlex.cpp
H

™

Create files mcrpar.cpp and mcrtkn.h from file mcrpar.y
H

™

mcrtkn.h \

mcrpar.cpp: mcrpar.y
yacc -d -v mcrpar.y
mv y.tab.c mcrpar.cpp
mv y.tab.h mcrtkn.h

H

™

Compile the parser mcrpar.y
H

T

mcrpar.o: mcrpar.cpp mcrpar.h

Translator Design p02overview
CMSC 4173 File makemicro

g++ -Cc -g mcrpar.cpp

B

Translator Design p02overview
CMSC 4173 File mcr.cpp

File mcr.cpp

//
//File mcr.cpp contains functions that process command line arguments
//and interface with the lex-generated scanner
//
//Author: Thomas R. Turner
//E-Mail: trturner@uco.edu
//Date: January, 2012
//
//Copyright January, 2012 by Thomas R. Turner
//Do not reproduce without permission from Thomas R. Turner
//
//C++ Standard include files
//
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <cstdio>
#include <string>
using namespace std;
//
//Application include files
//
#include "mcrlex.h"
#include "mcrpar.h"
//
//Externals
//
ofstream tfs; //trace file stream
//
//BadSuffixException
//
struct BadSuffixException {
BadSuffixException(char* fn)
{ cout<<endl
cout << "Input file \"" << fn << "\" does not have a .mcr suffix.";

}
b

Translator Design p02overview
CMSC 4173 File mcr.cpp

/]

//
class FileNameSuffix {

char* prefix;
public:

FileNameSuffix(char* fn)

{ char* p=strstr(fn,".mcr");
if (1p) throw BadSuffixException(fn);
int n=p-fn;
if (n+4!=strlen(fn)) throw BadSuffixException(fn);
prefix=new char[strlen(fn)+1];
strncpy(prefix,fn,n);
prefix[n]=0;

}

~FileNameSuffix({if (prefix) delete[] prefix;}
void Suffix(char* fn,const char* suffix)

{ strepy(fn,prefix);

strcat(fn,suffix);
}
b
//
//CommandLineException
//

struct CommandLineException {

CommandLineException(int m,int a)

{ cout<<endl
cout << "Too many arguments on the command line.";
cout << endl,;
cout << m << " argument(s) are permitted on the command line.";
cout << endl;
cout << a << " argument(s) appeared on the command line.";
cout << endl,;

b
//
/[FileException
//
struct FileException {
FileException(const char* fn)
{ cout<<endl
cout << "File " << fn << " could not be opened.";
cout << endl;

b

Translator Design p02overview
CMSC 4173 File mcr.cpp

//
//
void CompilerMgr(FILE* i)
{ Parser P(i);

P.Parse();
}
//
//Function main processes command line arguments
//
int main(int argc,char* argvl])
{ try{
char ifn[255];
switch (argc) {
case 1: //Prompt for the input file name
cout << "Enter the input file name. ";
cin >> ifn;
break;
case 2: //Read the input file name
strepylifn,argvi1]);
break;
default:
throw CommandLineException(1,argc-1);
break;
}
FileNameSuffix F(ifn); //Find the prefix of the input file name
char tfn[255];

F.Suffix(tfn," .trc"); //Create the trace file name
FILE* i=fopenl(ifn,"r"); [//Open the input file

if (1/) throw FileException(ifn);

tfs.open(tfn); if (1tfs) throw FileException(tfn);

CompilerMagr(i);

tfs << endl; //Put a new line in the trace file
tfs.close(); //Close the trace file

fcloseli); //Close the input file

}catch(...) {
cout << endl;
cout << "Program terminated!";
cout << endl;
cout << "l won't be back!";
cout << end/;
exit(EXIT_FAILURE);

}

return 0;

Translator Design p02overview
CMSC 4173 File mcrpar.y

%{
/l
//File mcrpar.y contains the grammar for Micro, a language defined by
//Fischer and LeBlanc in their book "Crafting a Compiler" ISBN0-8053-3201-4
//
//Author: Thomas R. Turner
//E-Mail: trturner@uco.edu
//Date: January, 2012

//
//C and C++ include files

//
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
using namespace std;
/l
//Application include files
/l
#include "mcrpar.h"
//Externals

/l
extern ofstream tfs; //Trace File Stream

extern int line; //Current Line - defined in mcrlex.|
extern int col; //Current Column - define in mcrlex.|
/l
//Globals
/l
/l
//User subroutines
/l
void yyerror(const char*);

1/l
%}

Translator Design
CMSC 4173

%token TOKEN_BEGIN

/* arithmetic operators: 2*/
%token PLUS

%token MINUS

/* punctuation: 2*/
%token COMMA
%token SEMICOLON

/* parentheses & brackets: 2*/
%token LPAREN
%token RPAREN

/* assignment and range: 1*/
%token ASSIGN

/* reserve words: 4*/
%token RESERVE_WORDS
%token BEGIN_

%token END

%token READ

%token WRITE

/* regular expressions: 2*/
%token REGULAR_EXPRESSIONS
%token INTLIT

%token IDENTIFIER

%token TOKEN_END

/* total: 13*/

p02overview
File mcrpar.y

Translator Design p02overview
CMSC 4173 File mcrpar.y

%%
program: BEGIN_ statement_list END
{tfs << endl << "#001 program->BEGIN statement_list END";
}
statement_list: statement
{tfs << endl << "#002 statement_list->statement";
}
statement_list: statement_list SEMICOLON statement
{tfs << endl << "#003 statement_list->statement_list ; statement";
}
statement: IDENTIFIER ASSIGN expression
{tfs << end| << "#004 IDENTIFIER := expression";
}
statement: READ LPAREN identifier_list RPAREN
{tfs << endl << "#005 READ (IDENTIFIER_list)";
}
statement: WRITE LPAREN expression_list RPAREN
{tfs << endl << "#006 WRITE (expression_list)";
}
identifier_list: IDENTIFIER
{tfs << endl << "#007 IDENTIFIER _list->IDENTIFIER";
}
identifier_list: identifier_list COMMA IDENTIFIER
{tfs << endl << "#008 identifier_list->identifier_list , IDENTIFIER";
}
expression_list: expression
{tfs << endl << "#009 expression_list->expression";
}
expression_list: expression_list COMMA expression
{tfs << endl << "#010 expression_list->expression_list , expression";
}
expression: primary
{tfs << endl << "#011 expression->primary";
}
expression: primary addop primary
{tfs << endl << "#012 expression->primary addop primary";
}
primary: LPAREN expression RPAREN
{tfs << endl << "#013 primary->(expression)";
}
primary: IDENTIFIER
{tfs << endl << "#014 primary->IDENTIFIER";
}
primary: INTLIT
{tfs << endl << "#015 primary->INTLIT";
}
addop: PLUS
{tfs << end| << "#016 addop-> +";

Translator Design p02overview
CMSC 4173 File mcrpar.y

}
addop: MINUS

{tfs << endl << "#017 addop-> -";
}
%%
//
//User function section
//
struct Error {
Error(const char* m)
{ cout<<endl <<"line(" << line << ") col(" << col << ") " << m;
cout << endl,;

}
b
/l
//Required function yyerror
/!
void yyerror(const char* m){throw Error(m);}
/l
/l

Parser::Parser(FILE* i):Lexer(i){}

int Parser::Parse(){return yyparse();}
//
//

Parser::~Parser(){}

Translator Design p02overview
CMSC 4173 File mcrtkn.h (y.tab.h)

/* A Bison parser, made by GNU Bison 2.4.1. */
/* Skeleton interface for Bison's Yacc-like parsers in C

Copyright (C) 1984, 1989, 1990, 2000, 2001, 2002, 2003, 2004, 2005, 2006
Free Software Foundation, Inc.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */

/* As a special exception, you may create a larger work that contains
part or all of the Bison parser skeleton and distribute that work
under terms of your choice, so long as that work isn't itself a
parser generator using the skeleton or a modified version thereof
as a parser skeleton. Alternatively, if you modify or redistribute
the parser skeleton itself, you may (at your option) remove this
special exception, which will cause the skeleton and the resulting
Bison output files to be licensed under the GNU General Public
License without this special exception.

This special exception was added by the Free Software Foundation in
version 2.2 of Bison. */

/* Tokens. */
#ifndef YYTOKENTYPE
define YYTOKENTYPE
/* Put the tokens into the symbol table, so that GDB and other debuggers
know about them. */
enum yytokentype {
TOKEN_BEGIN = 258,
PLUS = 259,
MINUS = 260,
COMMA = 261,
SEMICOLON = 262,
LPAREN = 263,
RPAREN = 264,
ASSIGN = 265,

Translator Design
CMSC 4173

RESERVE_WORDS = 266,
BEGIN_ =267,
END = 268,
READ = 269,
WRITE = 270,
REGULAR_EXPRESSIONS = 271,
INTLIT = 272,
IDENTIFIER = 273,
TOKEN_END =274
b
ttendif
/* Tokens. */
#define TOKEN_BEGIN 258
ttdefine PLUS 259
ttdefine MINUS 260
t#tdefine COMMA 261
#tdefine SEMICOLON 262
#tdefine LPAREN 263
#tdefine RPAREN 264
ttdefine ASSIGN 265
#tdefine RESERVE_WORDS 266
#tdefine BEGIN_ 267
#tdefine END 268
#tdefine READ 269
ttdefine WRITE 270
#define REGULAR_EXPRESSIONS 271
#tdefine INTLIT 272
ttdefine IDENTIFIER 273
#define TOKEN_END 274

#if ! defined YYSTYPE && ! defined YYSTYPE_IS_DECLARED
typedef int YYSTYPE;

define YYSTYPE_IS_TRIVIAL 1

define yystype YYSTYPE /* obsolescent; will be withdrawn */
define YYSTYPE_IS_DECLARED 1

#tendif

extern YYSTYPE yylval;

p02overview
File mcrtkn.h (y.tab.h)

Translator Design
CMSC 4173

%{
/l
// File mcrlex.l defines a scanner for micro, a language defined
// in "Crafting a Compiler" by Fischer and LeBlanc.

//
// Author: Thomas R. Turner
// E-Mail: trturner@uco.edu
// Date: January, 2012

//
//Copyright January, 2012 by Thomas R. Turner.

//Do not reproduce without permission from Thomas R. Turner
//
//
// Standard C and C++ Library Include Files
/l
#include <cstdlib>
#include <cstring>
#include <iostream>
#tinclude <fstream>
#include <iomanip>
#include <string>
#include <cstdio>
#include <map>
using namespace std;
//
// Application Includes
/l
#include "mcrlex.h"
#include "mcrtkn.h"
/l
//Externals
/l
extern ofstream tfs;
/l
//Global Variables
/l
static map<string,int> RW;
static int tokencode;

static string* TokenName;
int line=1;

int col =1;

//

//Functions

/1

void ToLower(char* o,char* j,int /); //Coerce string i to lower case
int TokenMgr(int t); //Token post processing
void PrintToken(ostream& o,int tc,int l,int c); //Print the token and attributes

/]

p02overview
File mcrlex.|

Translator Design
CMSC 4173

//Exceptions

/1

struct StringTokenException{
StringTokenException(char* t,int /,int c)

{

}
b

cout << endl;

cout << "line(" << /<< ") col (" << c<<")";
cout << "Lexical error: ";

cout << "Strings cannot span lines";

cout << endl;

cout<<"|"<<t<<"|";

cout << endl;

struct BadCharacterException{
BadCharacterException(char p,int /,int c)

{

b
%}

cout << endl;

cout << "line(" << /<< ") col (" << c<<")";

cout << "Lexical error: ";

cout << "lllegal character |" << p << "| ASCII code=" << (int)p;
cout << endl;

p02overview
File mcrlex.|

Translator Design
CMSC 4173

%%

[\t]+

[\n]
[a-zA-Z][a-zA-Z0-9]*
[0-9]+

nyn

’
n.n

{col+=strlen(yytext);}
{line++;col=1;}
return TokenMgr(IDENTIFIER);
return TokenMgr(INTLIT);
return TokenMgr(PLUS);
return TokenMgr(MINUS);
return TokenMgr(COMMA);
return TokenMgr(SEMICOLON);
return TokenMgr(LPAREN);
return TokenMgr(RPAREN);
return TokenMgr(ASSIGN);
{ throw BadCharacterException

(*yytext

Jine

,col

);

p02overview
File mcrlex.|

Translator Design p02overview
CMSC 4173 File mcrlex.|

%%
/l
//Class Lexer implementation
//
//
void ToLower(char* o,char* i,int /)
{ for (int 0=0;0</&&0a<1024;a++) o[a]=tolower(i[a]); [/To lower case
o[/1=0; //Null termination
}
//
//Function TokenMgr processes the token after it has been recognized
//
int TokenMgr(int t)
{ inttc=t;
if (t==IDENTIFIER) {
char s[1024];
Tolower(s,yytext,strlen(yytext));
tc=RWI[s];
if (tc==0) tc=t;

}
PrintToken(tfs,tc,line,col);
col+=yyleng;

return tc;

Translator Design p02overview
CMSC 4173 File mcrlex.|

//

//Constructor Lexer is used to redirect the input file stream from the
//keyboard to input file stream i.
//

Lexer::Lexer(FILE* i)

{ wyin=i;
const int MAXSY=17;
static string sy[]=

{"TOKEN_BEGIN" ,"PLUS" ,"MINUS" ,"COMMA"
,"SEMICOLON" ,"LPAREN" ,"RPAREN" ,"ASSIGN"
,"RESERVE_WORDS" ,"BEGIN" ,"END" ,"READ"
,"WRITE" ,"REGULAR_EXPRESSIONS" ,"INTLIT" ,"IDENTIFIER"
, "TOKEN_END"

b

TokenName=new string[MAXSY];

for (int a=0;a<MAXSY;a++) TokenNamel[a]=sy[a];
static string rw[]=

{Ilbeginll ’llendll ,llreadll ,"Write“
b
static int tc[]=
{BEGIN_ ,END ,READ ,WRITE
b
for (int a=0;0<4;a++) RW[rwla]l=tc[a];
}
/l
//Function Lex calls yylex
/l

int Lexer::Lex(void)

{ tokencode=yylex();
return tokencode;

}

//

//Function PrintToken prints the token code name and the spelling of the
//token.
//
void PrintToken(ostream& o,int tc,int /,int c)
{ o<<endl

0 << "Token";

0<<":Code=" << setw(3)<<tc;

0<<" Name=" << setw(10) << TokenName[tc-TOKEN_BEGIN];
0<<"line=" <<setw(3)<<]/;

o<<"col=" <<setw(3)<<c;

0 << " Spelling=\"" << (char*)yytext << "\"";

// End of Lex Definition

Translator Design p02overview
CMSC 4173 File mcrlex.h

#ifndef mcrlex_h
#define mcrlex_h 1

//
// File mcrlex.h defines class Lexer.
//
// Author: Thomas R. Turner
// E-Mail: trturner.uco.edu
// Date: January, 2012
//
// Copyright January, 2012 by Thomas R. Turner
// Do not reproduce without permission from Thomas R. Turner.
//
//
// Standard C and C++ include files
//
#include <cstdio>
#include <fstream>
#include <iostream>
//
//Namespaces
//
using namespace std;
//
//Function: yylex
//Function yylex is the mcrner. Function yylex returns an integer
//token code as defined above or 0 if end-of-file has been
//reached.
//
#ifdef __cplusplus
extern "C"
#endif
int yylex (void);
//
//Class Lexer defines the attributes of a Scanner
//
class Lexer {
public:

Lexer(FILE* i); //Constructor used to redirect the keyboard (stdin) to file i.

int Lex(void); //Call the scanner yylex and return the code

b
#endif

	id := expression ;
	read (id-list) ;
	write (expression-list) ;
	id
	id-list , id
	expression
	expression-list , expression
	primary
	expression additive-operator primary
	(expression)
	id
	intlit
	+
	-
	Table 1. Set of productions for the micro grammar of Example 2.

